Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences.
نویسندگان
چکیده
We have used three cloned DNA sequences consisting of (1) part of the suppressor of forked transcription unit, (2) a cloned 359-bp satellite, and (3), a type I ribosomal insertion, to examine the structure of the base of the X chromosome of Drosophila melanogaster where different chromatin types are found in juxtaposition. A DNA probe from the suppressor of forked locus hybridizes exclusively to the very proximal polytenized part of division 20, which forms part of the beta-heterochromatin of the chromocenter. The cloned 359-bp satellite sequence, which derives from the proximal mitotic heterochromatin between the centromere and the ribosomal genes, hybridizes to the under replicated alpha-heterochromatin of the chromocenter. The type I insertion sequence, which has major locations in the ribosomal genes and in the distal mitotic heterochromatin of the X chromosome, hybridizes as expected to the nucleolus but does not hybridize to the beta-heterochromatic division 20 of the polytene X chromosome. Our molecular data reveal that the suppressor of forked locus, which on cytogenetic grounds is the most proximal ordinary gene on the X chromosome, is very close to the junction of the polytenized and non-polytenized region of the X chromosome. The data have implications for the structure of beta-heterochromatin-alpha-heterochromatin junction zones in both mitotic and polytene chromosomes, and are discussed with reference to models of chromosome structure.
منابع مشابه
Genetic and bioinformatic analysis of 41C and the 2R heterochromatin of Drosophila melanogaster: a window on the heterochromatin-euchromatin junction.
Genomic sequences provide powerful new tools in genetic analysis, making it possible to combine classical genetics with genomics to characterize the genes in a particular chromosome region. These approaches have been applied successfully to the euchromatin, but analysis of the heterochromatin has lagged somewhat behind. We describe a combined genetic and bioinformatics approach to the base of t...
متن کاملHeterochromatin: A Rapidly Evolving Species Barrier
Nearly 100 years ago, biologists divided regions of chromosomes into two types, euchromatin and heterochromatin, on the basis of their appearance (reviewed in [1]). The initial classification of DNA was based on the observation that euchromatic regions changed their degree of condensation during the cell division cycle, whereas heterochromatic regions remained highly condensed throughout the ma...
متن کاملOn the Evolution of Yeti, a Drosophila melanogaster Heterochromatin Gene
Constitutive heterochromatin is a ubiquitous and still unveiled component of eukaryotic genomes, within which it comprises large portions. Although constitutive heterochromatin is generally considered to be transcriptionally silent, it contains a significant variety of sequences that are expressed, among which about 300 single-copy coding genes have been identified by genetic and genomic analys...
متن کاملThree distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants.
Drosophila melanogaster telomeric DNA is known to comprise two domains: the terminal tract of retrotransposons (HeT-A, TART and TAHRE) and telomere-associated sequences (TAS). Chromosome tips are capped by a protein complex, which is assembled on the chromosome ends independently of the underlying terminal DNA sequences. To investigate the properties of these domains in salivary gland polytene ...
متن کاملThe role of heterochromatin in the expression of a heterochromatic gene, the rolled locus of Drosophila melanogaster.
Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 125 4 شماره
صفحات -
تاریخ انتشار 1990